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Abstract
An exact and analytic Green function for a Dirac particle in interaction with an
electromagnetic plane wave field, expressed in the coordinate gauge, is given
by using the path integral formalism. The reparametrization invariant and
supergauge invariant action describing the relativistic spinning particle is used.
The problem is simplified by using two identities which relate the quantum
problem directly to its classical analogue. The role of these identities is to
separate the free propagation (bosonic and fermionic) from the interaction term.
Obviously, the bosonic classical evolution is corrected by the spin fluctuation.
From the exact expression of the Green function, the Polyakov spin factor is
deduced in an explicit way.

PACS numbers: 03.30.+p, 03.65.Pm, 03.65.Ge, 03.65.Db

1. Introduction

Up to now, the path integral formulation for spin has been considered a very important but
difficult task in theoretical physics. The difficulty lies in the fact that, on the one hand, the spin
is a physical entity with a purely quantum behaviour, i.e. it takes exclusively discrete values. On
the other hand, the path integral formulation needs some classical concepts such as trajectories
which are exclusively continuous. This strange feature has intrigued many researchers and has
thus attracted particular attention. Consequently, there have been many attempts to elucidate
this problem. These attempts can be essentially classified into two categories of models: the
commutative model and the anticommutative one. The first category of models which can be
said to be bosonic uses commuting variables and this can be traced back to previous models
such as the Feynman model where the one-dimensional free Dirac electron, based on the
Poisson process [1], Schulman model gives a path representation, where the spin dynamics is
described via a top model [2], which has been extended to the relativistic case [3]; and finally
the Barut attempt in which the spin is described via internal evolution by means of degrees of
freedom similar to the complex spinors [4]. The latter model is particularly interesting because
it is directly related to the Dirac equation and it contains the velocity oscillations known as the
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Schrödinger zitterbewgung. The second category is said to be fermionic because it is based
on the anticommuting (Grassmannian) variables. This is due to Berezin and Marinov [5] who,
using path integrals, have presented the Dirac propagator, in terms of Grassmanian variables,
in the form of exp(i action). This model is in fact a renewal of the Fradkin model which
was the first to present an action for a spinning particle based on the Grassmann variables.
Without pretention, we can say that this was the first successful and audacious attempt for
the correct description of the spinning point particle. Noting that the action of this model
has an interesting feature owing to its gauge invariance, particularly in its reparametrization
invariance and local supersymmetric form. In the last decade, Fradkin and Gitman returned
to this model by starting from expressions for the propagators of the corresponding quantum
field theories and then establishing a rigorous formulation of this path integral representation.
This can be considered as a natural and a general method [6]. Consequently, they succeeded
in postulating the following expression for the causal Green function of the spinning particle
in interaction with an electromagnetic field:

S̃c = exp

(
iγ̃ n ∂l

∂θn

)∫ ∞

0
de0

∫
dχ0

∫
DxDeDpeDχDpχDψM(e)

× exp

{
i
∫ 1

0

[
− ẋ2

2e
− e

2
m2 − gẋA(x) + iegFµν(x)ψ

µψν

+ i

(
ẋαψ

α

e
− mψ5

)
χ − iψnψ̇

n + pχ χ̇ + peė

]
dτ + ψn(1)ψn(0)

}∣∣∣∣
θ=0

(1)

with x, e and pe denoting bosonic (real) variables, θ, χ, pχ and ψ fermionic (odd
Grassmannian) variables, with the following boundary conditions:

x(0) = xa x(1) = xb e(0) = e0 χ(0) = χ0 ψ(1) + ψ(0) = θ (2)

and

M(e) =
∫

Dp exp

{
1

2

∫ 1

0
ep2 dτ

}
(3)

and

Dψ = Dψ
[∫

ψ(1)+ψ(0)=θ

Dψ exp

{∫ 1

0
ψnψ̇

n dτ

}]−1

. (4)

In these previous expressions and in what follows the product of two quadrivectorsAB stands
for AB = AµB

µ.

Separating the gauge-fixing term SGF = ∫ 1
0 [pχχ̇ + peė]dτ and the boundary term

ψn(1)ψn(0), we get the gauge invariant action

S =
∫ 1

0

[
− ẋ2

2e
− e

2
m2 − gẋA(x) + iegFµν(x)ψ

µψν + i

(
ẋαψ

α

e
− mψ5

)
χ − iψnψ̇

n

]
dτ

(5)

from which we easily deduce the Lagrangian classical equations of motion

1

e2

(
ẋ2

2
− iẋαψαχ

)
+ igFµν(x)ψ

µψν − m2

2
= 0 (6)

i

(
ẋαψ

α

e
− mψ5

)
χ = 0 (7)

2iψ̇α + 2igeFαν(x)ψ
ν − i

ẋα

e
χ = 0 (8)
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−2iψ̇5 + imχ = 0 (9)

d

dτ

(
ẋα

e

)
+ gẋµFµα(x) + ieg

∂

∂xα
Fµν(x)ψ

µψν = 0. (10)

Our purpose in this paper is to consider the case of a Dirac particle interacting with the
plane wave field which is expressed in the coordinate gauge [7–9] by using this model. This
problem has already been investigated via a bosonic path integral framework where the spin
calculations have been omitted [10]; to put it another way, the spin calculus has not been carried
out explicitly when using path integral techniques but has been incorporated by extending the
spin-zero technique. For this reason, we are reconsidering the same problem by trying to
perform correctly these spin calculations by working out all the integrations using suitable
identities which relate the quantum problem to its classical analogue. In fact, these identities
represent the projection of the equations (8) and (10) on the plane wave propagation vector.
One identity is related to the plane wave variable which has the objective of separating the
interaction from the free propagation of the bosonic part. The other identity is related to
the spin variable which is introduced with the aim of separating the interaction from the
free-spin propagation. Besides, they have another role which consists of making apparent the
predominance of the classical evolution. Consequently, the evaluation of the causal Green
function will be straightforward and the result will be very simple. Furthermore, we also wish
to extract the exact structure of the Polyakov spin factor [11] relative to this problem. This
latter spin factor has been, for example, exactly carried out in the constant electromagnetic
field case [12], in the plane wave case [13–16], and the combination of the two configurations
case [17].

To end this section, let us expose the configuration of the plane wave field. Thus, the
quadripotential of the plane wave is chosen in the coordinate gauge, that is to say

(x − x0)
µAµ(x) = 0 (11)

where x0 is an arbitrary reference point.
The advantage of this gauge choice is that having the electromagnetic tensor Fµν , the

4-vector potential Aµ is determined in a unique manner following the inversion formula

Aµ(x) =
∫ 1

0
dα α(x − x0)

νFµν(αx) (12)

with the electromagnetic plane wave tensor having the form

Fµν(x) = fµνF (ζ ) (13)

where ζ = ηx, F(ζ ) is an arbitrary function of ζ and fµν is a constant antisymmetric tensor
verifying with ηµ the following useful properties:

ηµηµ = 0 ηµf
µν = 0 ηµf

µν∗ = 0
f ∗
µλf

λ
ν = 0 f ∗

µλf
λ∗
ν = fµλf

λ
ν = ηµην

(14)

f ∗ is the dual tensor of f .
In this gauge, the 4-potential Aµ will obviously take the following form:

Aµ(x) = fµν(x − x0)
νK(ζ, ζ0) (15)

where K(ζ, ζ0) satisfies the equation

2K + (ζ − ζ0)
dK

dζ
= −F(ζ ) (16)
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which has the following solution:

K(ζ, ζ0) = − A(ζ )

(ζ − ζ0)
+

1

(ζ − ζ0)2

∫ ζ

ζ0

dξ ′A(ξ ′) (17)

with dA(ζ )
dζ = F(ζ ).

In the following section we are going to use the path integral representation for the Dirac
equation given by expression (1) to evaluate the exact and analytic Green function for a Dirac
particle interacting with the plane wave field and having the previous properties.

2. Path integral calculation

Before beginning our calculation, it is suitable at first to fix in equation (1) the gauge over
bosonic and Grassmanian proper times by performing functional integrations over π and ν

which give, respectively, the delta functional δ(ė) and δ(χ̇) implying that

ė = 0 e0 = e1 = · · · = eN = e

χ̇ = 0 χ0 = χ1 = · · · = χN = χ.
(18)

Before performing the calculations in the phase space, we go over the Hamiltonian form by
completing the square in ẋ and linearizing the arising quadratic term. The result will be

S̃c(xb, xa) = exp

[
iγ̃ n ∂l

∂θn

] ∫ ∞

0
de
∫

dχ
∫

DxDpDψ exp

{
i
∫ 1

0
dτ
[
pẋ − iψnψ̇

n

+
e

2
(p2 − m2) + egpA(x) +

e

2
g2A2(x)− i[(p + gA(x))ψ + mψ5]χ

+ iegFµν(x)ψ
µψν

]
+ ψn(1)ψ

n(0)

}
θ=0

. (19)

Now, in order to separate the bosonic interaction terms from the free bosonic evolution we
introduce a new variable ζ which considers the plane wave variable ηx as independent from
the quadriposition x via the following easily proved identity:∫

dζa dζbδ(ζa − ηxa)

∫
DζDpζ exp

[
i
∫ 1

0
dτ pζ (ζ̇ − ηẋ)

]
= 1. (20)

By inserting this in equation (19), then shifting the momentum from p to p + pζη by taking
into account the equations η2 = 0 and ηA = 0, the Green function will take the following
form:

S̃c (xb, xa) = exp

[
iγ̃ n ∂l

∂θn

] ∫ ∞

0
de
∫

dχ
∫

dζa dζb δ(ζa − ηxa)

∫
DζDpζDψ

× exp

{
i
∫ 1

0
dτ
[
pζ ζ̇ − iψnψ̇

n − e

2
g2(ζ − ζ0)

2K2(ζ, ζ0)

− i
(
pζ (ηψ) + mψ5

)
χ + iegFµν(ζ )ψ

µψν
]

+ ψn(1)ψn(0)

}
S̃0(xb, xa)

∣∣∣∣
θ=0

(21)

where S̃0 (xb, xa) is the free propagation function defined as

S̃0(xb, xa) =
∫

DqDp exp

{
i
∫ 1

0
dτ
[
pq̇ + g(ep + iχψ)f qK(ζ, ζa)

+ epζ (pη) +
e

2
(p2 − m2) − i(pψ)χ

] }
. (22)
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Noting that we have replaced, in this latter expression, the 4-potential Aµ(x) with its explicit
form equation (15) and have assumed that q = x − x0.

At this level, the q functional integration can easily be performed to give a delta functional
and as a result the free propagator is therefore reduced to

S̃0 (xb, xa) =
∫

Dpδ [ṗ − g(ep + iχψ)fK(ζ, ζa)] exp

{
ip(1)q(1)− ip(0)q(0)

+ i
∫ 1

0
dτ
[e

2
(p2 − m2) + epζ (pη) − i(pψ)χ

]}
. (23)

The presence of the delta functional in this equation has the effect of selecting a differential
equation satisfied by p and which is in fact nothing but the classical equation of motion.
This differential equation can be integrated to produce the free propagation function in the
following form:

S̃0 (xb, xa) =
∫

d4pk

(2π)4

[
det

(
dp(1)

dpk

dp(0)

dpk

)]1/2

exp

{
ip(1)(xb − xa)

+ i
∫ 1

0
dτ
[ e

2
(p2 − m2) + epζ (pη) − i(pψ)χ

]}
(24)

with x0 = xa.

Obviously, the momentum p(τ) satisfies the equation of motion in the delta functional
argument presented in equation (23),

dp

dτ
= egK(ζ, ζa)(pf ) + iχgK(ζ, ζa)(ψf ). (25)

This can be solved with the iteration method yielding the following result:

p(τ) = p(1) − eg(p(1)f )
∫ 1

τ

ds K(ζ(s), ζa) +
(eg)2

2
(p(1)η)η

(∫ 1

τ

ds K(ζ(s), ζa)

)2

+ ieχg2η

∫ 1

τ

ds
∫ 1

s

ds′K(ζ(s), ζa)(ηψ(s ′))K(ζ(s′), ζa)

− iχg
∫ 1

τ

ds K(ζ(s), ζa)(ψ(s)f ) (26)

where we have made use of the relations given by (14) and paid attention to the fact that

ηp(τ) = ηp(1). (27)

This equation is nothing but the classical equation of motion. In fact, as p = − ẋ
e

− gA(x) +
i 1
e
ψχ the classical equations (8) and (10) projected on the η direction give (pη) = constant.

Next, it is suitable to choose in equation (24) pk = p(1) as an initial condition for our
problem. Thus, the determinant can be written as[

det

(
dp(1)

dpk

dp(0)

dpk

)]
= det

(
dp(0)

dp(1)

)
= det(1 + Q) (28)

where the matrix Q is defined by

Qµ
ν(ζ ) = −egfµ

ν

∫ 1

0
ds K(ζ(s), ζa) +

(eg)2

2
ηµη

ν

(∫ 1

0
ds K(ζ(s), ζa)

)2

. (29)

In order to compute this determinant, let us first write

det(1 + Q) = exp Tr ln(1 + Q). (30)



1656 T Boudjedaa and L Chetouani

Next, we expand it in powers of Q as follows:

ln(1 + Q) = Q − Q2/2 (Qn = 0 for n � 3 because of η2 = 0 = ηf ). (31)

Finally, since f is an antisymmetric tensor, we get

Tr ln(1 + Q) = 0 (32)

As a result, we get the determinant which is equal to unity, namely

det

(
dp(0)

dp(1)

)
= 1. (33)

Incidentally, this result is not fortuitous because this determinant contains, in principle, the
quantum fluctuations [10] which are absent in our case.

Now, substituting these results in equation (21), the path integral is reduced to

S̃c (xb, xa) = exp

[
iγ̃ n ∂l

∂θn

] ∫ ∞

0
de
∫

dχ
∫

dζa dζbδ(ζa − ηxa)

∫
d4p

(2π)4D(e, p)

×
∫

DζDpζDψ exp

{
i
∫ 1

0
dτ

[
pζ (ζ̇ + (epη)) − iψnψ̇

n

− e

2
g2(ζ − ζa)

2K2(ζ, ζa) − i
[
pζ (ηψ) + mψ5]χ + iegF(ζ )ψµfµνψ

ν

− i(pψ)χ − i(eg)χ(pfψ(τ))

∫ 1

τ

ds K(ζ(s), ζa) + i
(eg)2

2
χ(pη)(ηψ)

×
(∫ 1

τ

ds K(ζ(s), ζa)

)2

+ ie2g2χ(pη)

∫ 1

τ

ds
∫ 1

s

ds′K (ζ(s), ζa)ηψ(s ′)

× K(ζ(s′), ζa) − iegχ
∫ 1

τ

ds K(ζ(s), ζa)ψ(s)fp

]
+ ψn(1)ψn(0)

} ∣∣∣∣
θ=0

(34)

where D(e, p) is the free propagation function given by

D(e, p) = exp
{

ip(xb − xa) + i
[ e

2
(p2 − m2)

]}
. (35)

At this stage, as can be seen, the main difficulty lies in the parts relative to the spin propagation.
Here again, in order to be able to extract the free-propagationfunction of spin, we insert another
identity which considers ηψ as independent of ψ. As we will see later, this identity gives rise
to two classical equations of motion which are, respectively, the projection of the exterior
motion presented by the x coordinate and the internal (spinorial) one described by ψ along the
plane wave propagation vector η. In fact, these classical equations will be decisive and very
useful in computing the propagator.

Indeed, we introduce a new Grassmannian variable λ as an independent variable from ψ

via the following identity:

∫
dλa dλb δ(λa − ηψa)

∫
DλDpλ exp

[
i
∫ 1

0
dτ pλ(λ̇ − ηψ̇)

]
= 1 (36)
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where {λ, pλ} are Grassmannian odd variables. The causal Green function will then take the
following form:

S̃c(xb, xa) = exp

[
iγ̃ n ∂l

∂θn

] ∫ ∞

0
de
∫

dχ

∫
dζa dζb dλa dλb δ(ζa − ηxa)

∫
d4p

(2π)4
D(e, p)

×
∫

DζDpζDλDpλDψ δ(λa − ηψa) exp

{
i
∫ 1

0
dτ

[
pζ (ζ̇ + (epη) − iλχ)

+pλ(λ̇ − ηψ̇) − iψnψ̇
n − e

2
g2(ζ − ζa)

2K2(ζ, ζa) − i[pψ + mψ5]χ

+ iegF(ζ )ψµfµνψ
ν − i(eg)χ(pfψ(τ))

∫ 1

τ

ds K(ζ(s), ζa) + i
(eg)2

2
χ(pη)

× λ(τ)

(∫ 1

τ

ds K(ζ(s), ζa)

)2

+ ie2g2χ(pη)

∫ 1

τ

ds
∫ τ

s

ds′K(ζ(s), ζa)

× λ(s′)K(ζ(s′), ζa) − iegχ
∫ 1

τ

ds K(ζ(s), ζa)(ψ (s) fp)

]

+ ψn(1)ψn(0)

} ∣∣∣∣
θ=0

. (37)

Now, it is clear that the integrations overpζ may give a delta functional involving the following
equation:

ζ̇ + (epη) − iλχ = 0 (38)

which is exactly the classical equation of motion projected along the η direction. In fact, it is
p = − ẋ

e
− gA(x) + i 1

e
ψχ projected on the wave propagation vector η. It is important to note

that it is extracted in a natural way here. That is to say, the classical behaviour of the particle
is predominant in the propagation. Hereafter, the variable ζ will be considered as a parameter
of the evolution.

In order to get the classical equation of motion satisfied by the spin variables, we have
first to get rid of the boundary condition ψn(1) + ψn(0) = 0, which is the spin antiperiodic
condition. For this, we go over the velocity spaceω related toψ via the following replacement:

ψ(τ) = 1

2

(∫ 1

0
dτ ′ ε(τ − τ ′)ω(τ ′) + θ

)
(39)

in other words

ψ̇ (τ ) = ω (τ) . (40)

The change given by equation (39) is to satisfy the boundary condition for anyω(τ) eliminating
therefore any restriction on the velocities. As a result, the propagation function relative to the
ωµ velocity space will have a Gaussian form and is written as

I (ωµ) =
∫

Dωµ exp

{
−1

2

∫ 1

0
dτ
∫ 1

0
dτ ′ ωµ(τ)Fµν(τ, τ

′)ων(τ ) +
∫ 1

0
dτ Jµ (τ ) ωµ (τ)

}
(41)

where

Fµν(τ, τ
′) = gµνε(τ − τ ′) − e

2
gfµν

∫ 1

0
ds F (ζ(s))ε(τ − s)ε(s − τ ′) (42)
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where gµν denotes the metric tensor and Jµ(τ) is an odd source given by

Jµ(τ) = −ipληµ +
i

2
pλaηµ − χ(pµ/2)

∫ 1

0
dτ ′ε(τ ′ − τ ) − eg

2

∫ 1

0
dτ ′ F(ζ(τ ′))

× ε(τ ′ − τ )θνfνµ +
eg

2
χpνfνµ

∫ 1

0
dτ ′ ε(τ ′ − τ )

∫ 1

τ ′
ds K(ζ(s), ζa)

− eg

2
χpνfνµ

∫ 1

0
dτ ′
∫ 1

τ ′
ds K(ζ(s), ζa)ε(s − τ ). (43)

For the ω5(τ ) velocity space, we will have to evaluate the following Gaussian integral:

I (ω5) =
∫

Dω5 exp

{
−1

2

∫ 1

0
dτ
∫ 1

0
dτ ′ ω5(τ )ε(τ − τ ′)ω5(τ ′) +

∫ 1

0
dτJ5(τ )ω

5(τ )

}
(44)

where

J5(τ ) = −m

2
χ

∫ 1

0
dτ ′ ε(τ ′ − τ ). (45)

In order to extract the classical equation over the spin variables let us introduce the following
shift of velocity ωµ(τ):

ωµ(τ) −→ ωµ(τ) + iηµ
∫ 1

0
dτ ′ ε−1

(
τ − τ ′)pλ(τ

′). (46)

In this manner, making use of the plane wave properties η2 = 0 and ηf = 0, we obtain the
following replacement:

I (ωµ) −→ I ′(ωµ) exp

{
i
∫ 1

0
dτ pλ(pη)

χ

2

}
(47)

where

I ′(ωµ) = I (ωµ) |Jµ(τ)→J ′
µ(τ)

(48)

with J ′
µ(τ ) = Jµ(τ) + ipληµ.

Now, the integration over pζ and pλ can easily and directly be performed giving the
following products of the delta functional:

2δ(ζ̇ + e(pη) − iλχ) (49)

2δ
(
λ̇ + (pη)

χ

2

)
. (50)

Consequently, these expressions impose two constraints

ζ̇ + e(pη) − iλχ = 0 (51)

λ̇ + (pη)
χ

2
= 0 (52)

which are the classical equations of motion (8) and (10) projected along the η direction. In
fact, by using the plane wave properties given by (14) , the classical equations (8) and (10)
give d

dτ

(
ηẋ

e

) = 0 and 2iηψ̇ − i ηẋ
e
χ = 0, and from pη = − ηẋ

e
+ i 1

e
ηψχ we get the result.

Namely, the classical dynamics dominate the quantum evolution. Finally, the solutions of
these equations which will be very useful later on are given as
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ζ(τ ) = ζa − e(pη)τ + iλaχ (53)

λ(τ) = λa − (pη)
χ

2
τ. (54)

At this stage, we are ready to perform the Gaussian integrals I (ω5) and I (ωµ). The result is

I (ω5) = exp

{
−1

2

∫ 1

0
dτ
∫ 1

0
dτ ′ J5(τ )ε

−1(τ − τ ′)J5(τ
′)
}

= 1 (55)

I (ωµ) =
(

detF

detF |g=0

) 1
2

exp

{
−1

2

∫ 1

0
dτ
∫ 1

0
dτ ′Jµ(τ)F−1

µν (τ, τ
′)J µ(τ ′)

}
(56)

where we have made the usual shifts

ω5(τ ) −→ ω5(τ ) +
∫ 1

0
dτ ′J 5(τ ′)ε−1(τ ′ − τ ) (57)

ωµ(τ) −→ ωµ(τ) +
∫ 1

0
dτ ′Jµ(τ ′)F−1

µν (τ
′, τ ). (58)

Now, let us evaluate the quantity
(

detF
detF |g=0

) 1
2

involved in equation (56). For this purpose, we

first differentiate the well known formula

detF = exp(Tr lnF) (59)

with respect to g and then get

d

dg
detF = detF Tr

(
F−1 dF

dg

)
. (60)

This can be integrated to give(
detF

detF |g=0

) 1
2

= exp

[
1

2

∫ g

0
dg′ Tr

(
F−1 dF

dg′

)]
. (61)

Next, knowing that the inverse matrix F−1 verifies the following requirement:∫ 1

0
dτ ′′Fµλ(τ, τ ′′)F−1

λν (τ
′′, τ ′) = δµν δ(τ − τ ′) (62)

we substitute Fµν by its expression (42) and make the following replacement:

3µ
ν (τ, τ

′) =
∫ 1

0
dτ ′′δµλε(τ − τ ′′)F−1

λν (τ
′′, τ ′). (63)

Then, equation (62) converts to an integral equation in terms of 3µν(τ, τ
′) as

3µ
ν (τ, τ

′) = δµνδ(τ − τ ′) +
e

2
gfµλ

∫ 1

0
ds F (ζ (s))ε (τ − s)3λ

ν(s, τ
′). (64)

Thanks to the plane wave properties, the integration of this equation ends at the second
iteration. Thus, the result is

3µ
ν (τ, τ

′) = δµν δ(τ − τ ′) +
e

2
gf

µ

λ F (ζ(τ
′))ε(τ − τ ′)

+
(eg

2

)2
ηµην

∫ 1

0
ds F (ζ(s))F (ζ(τ ′))ε(τ − s)ε(s − τ ′). (65)
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One can easily check that F−1
µν (τ, τ

′) can be found by inverting equation (63):

F−1
µν (τ, τ

′) =
∫ 1

0
dτ ′′ gµλε−1(τ − τ ′′)3λ

ν(τ
′′, τ ′). (66)

So substituting (65), we arrive at the final expression

F−1
µν (τ, τ

′) = gµνε
−1(τ − τ ′) +

e

2
gfµνF (ζ(τ

′))δ(τ − τ ′)

+
(eg

2

)2
ηµηνF (ζ(τ ))F (ζ(τ

′))ε(τ − τ ′) (67)

and hence (
detF

detF |g=0

) 1
2

= 1. (68)

Notice that this result is obtained with the help of the relations (14) and by taking into account
the fact that f is an antisymmetric tensor.

Now, by substituting all these changes into (56), we obtain for I (ωµ) the following
expression:

I (ωµ) = exp

{−i

4
pλa (pη)χ − eg

4
χ(θfp)h(1, 0) +

(eg
2

)2
χ(ηθ)(pη)H(1, 0)

}
(69)

where

h(1, 0) =
∫ 1

0
dτ
∫ 1

0
dτ ′ F(ζ(τ ′)ε(τ ′ − τ ) (70)

and

H(1, 0) =
∫ 1

0
dτ
∫ 1

0
dτ ′
∫ 1

τ ′
dτ ′′K(ζ(τ ′′), ζa)ε(τ ′ − τ )F (ζ(τ ))

−
∫ 1

0
dτ
∫ 1

0
dτ ′
∫ 1

τ
′

dτ ′′ K(ζ(τ ′′), ζa)ε(τ ′′ − τ )F (ζ (τ ))

− 1

2

∫ 1

0
dτ
∫ 1

0
dτ ′
∫ 1

0
dτ ′′F(ζ(τ ))ε(τ − τ ′)F (ζ(τ ′))ε(τ ′ − τ ′′). (71)

Using the explicit solutions of the classical equations of motion (51) and (52) and combining
all the previous results, and after straightforward and long computations, the propagator will
be reduced to

S̃(xb, xa) = exp

(
iγ̃ n ∂l

∂θn

)∫
de
∫

dχ
∫

d4p

(2π)4D(e, p)

∫
dζb dζa dλb dλa δ(ζa − ηxa)

× δ

(
λb − λa +

pη

2
χ

)
δ

(
λa − ηθ

2
− pη

4
χ

)
δ

(
ζb − ζa + epη − i

ηθ

2
χ

)

× exp

{
i
g2

2pη

∫ ζb

ζa

dζ(ζ − ζa)
2K2(ζ, ζa) +

1

2
(pθ + mθ5)χ +

g2

4(pη)

(ηθ)χ

(ζb − ζa)

×
∫ ζb

ζa

dζ(ζ − ζa)
2K2(ζ, ζa) +

g

4(pη)
(A(ζb) − A(ζa))(θf θ)

− i(ηθ)χ

8(pη)(ζb − ζa)
(A(ζb) − A(ζa))(θf θ) − g

4(pη)
(θfp)

h̃(ζa, ζb)

(ζb − ζa)
χ

− g2

4(pη)

H̃ (ζa, ζb)

(ζb − ζa)
(ηθ)χ

}∣∣∣∣
θ=0
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where we have used

dτ

dζ
= −1

e(pη)

(
1 + i

(ηθ)

2e(pη)
χ

)
and χ

dτ

dζ
= −χ

e(pη)
= χ

(ζb − ζa)
(72)

and have defined the functions

h̃(ζb, ζa) = (A(ζa) + A(ζb))(ζb − ζa) − 2
∫ ζb

ζa

dζ A(ζ ) (73)

and

H̃ (ζb, ζa) =
∫ ζb

ζa

dζ

(∫ ζ
ζa

dζ A(ζ )
)2

(ζ − ζa)2
−

2
(∫ ζb

ζa
dζ A(ζ )

)2

(ζb − ζa)
− 2A(ζa)

∫ ζb

ζa

dζ

(∫ ζ
ζa

dζ A(ζ )
)

(ζ − ζa)

+ 3A2(ζa)(ζb − ζa) −
∫ ζb

ζa

dζ A2(ζ ) − A(ζa)A(ζb)(ζb − ζa) + (A(ζb) + A(ζa))

×
∫ ζb

ζa

dζ A2(ζ ) + 2(ζb − ζa)


∫ ζb

ζa

dζ
A2(ζ )

(ζ − ζa)
−
∫ ζb

ζa

dζ

(∫ ζ

ζa
dζ A(ζ )

)2

(ζ − ζa)3


 .

(74)

It is remarkable to note that

λb + λa = ηθ. (75)

This condition reflects the fact that we maintain an antiperiodic boundary condition for the spin
variables during the whole evolution. To be able to identify ζ = ηx at the end points we use
the integral representation δ

(
ζb − ζa + epη− i ηθ2 χ

) = ∫ dpζb

2π exp
(
ipζb

(
ζb − ζa + epη− i ηθ2 χ

))
and next shift the momentum p −→ p − ηpζb . This gives the following delta function:
δ(ζb − ζa − η(xb − xa)), namely ζa = ηxa and ζb = ηxb. Next, we integrate respectively over
dζa, dζb, dλa, dλb, de and dχ , the propagator is therefore reduced to

S̃(xb, xa) = (2i) exp

(
iγ̃ n ∂l

∂θn

)∫
d4p

(2π)4

1

p2 − m2 + iε

[(∫ ζb

ζa

dζ(ζ − ζa)
2K2(ζ, ζa)

− H̃ (ζa, ζb)

)
g2

4(pη)

(ηθ)

(ζb − ζa)
+

1

2
(pθ + mθ5) − ig(A(ζb) − A(ζa))

8(pη)(ζb − ζa)

× (ηθ)(θf θ) − g

4(pη)

h̃(ζa, ζb)

(ζb − ζa)
(θfp)

]
exp

{
ip(xb − xa) + i

g2

2pη

×
∫ ζb

ζa

dζ(ζ − ζa)
2K2(ζ, ζa) +

g

4(pη)
(A(ζb) − A(ζa))(θf θ)

}∣∣∣∣
θ=0

.

(76)

We notice that the integration over the variable ζ is carried out along a straight line connecting
ηxa and ηxb given by equation (53).

Finally, in order to perform differentiation with respect to θn, one should first expand the
exponential as

exp

{
g

4(pη)
(A(ζb) − A(ζa))(θf θ)

}
= 1 +

g

4(pη)
(A(ζb) − A(ζa))(θf θ)

+ 4

(
g

4(pη)

)2

((A(ζb) − A(ζa)))
2 (f01f23 − f02f13 + f03f12) θ

0θ1θ2θ3. (77)
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Next, making use of the identity

exp

(
iγ̃ n ∂l

∂θn

)
f (θ)

∣∣∣∣
θ=0

= f

(
∂

∂βn

)
exp

(
iβnγ̃ n

) ∣∣∣∣∣
β=0

(78)

where βn are odd Grassmannian variables and f is an arbitrary function, we get the final
expression for the causal propagator of a spinning particle in interaction with the plane wave
field

S̃(xb, xa) = −
∫

d4p

(2π)4

8p(xb, xa)

p2 − m2 + iε
exp

{
ip(xb − xa) + i

g2

2pη

∫ ζb

ζa

dζ(ζ − ζa)
2K2(ζ, ζa)

}
(79)

where 8p(xb, xa) is the so-called spin factor (Polyakov factor) given by

8p(xb, xa) =

(pγ̃ + mγ 5) +

g2

2(pη)

[∫ ζb
ζa

dζ(ζ − ζa)
2K2(ζ, ζa) − H̃ (ζa, ζb)

(ζb − ζa)

]
(ηγ̃ )

− g

2(pη)

h̃(ζa, ζb)

(ζb − ζa)
(γ̃ fp)

− g

8(pη)


 g2

(pη)

∫ ζb
ζa

dζ(ζ − ζa)
2K2(ζ, ζa) − H̃ (ζa, ζb) − 2i

(ζb − ζa)




× (A(ζb) − A(ζa))(ηγ̃ )(γ̃ f γ̃ ) +
g

4(pη)
(A(ζb)

−A(ζa))[2(pf γ̃ ) − (pγ̃ )(γ̃ f γ̃ ) − mγ 5(γ̃ f γ̃ )]

+
g2

8(pη)2

h̃(ζa, ζb)(A(ζb) − A(ζa))

(ζb − ζa)
[2(pγ̃ )(ηγ̃ ) + (γ̃ fp)(γ̃ f γ̃ )]

− mg2

4(pη)2
((A(ζb) − A(ζa)))

2(f01f23 − f02f13 + f03f12)


 . (80)

It is easy to show that the function S̃(xb, xa) and its corresponding causal Green function
Sc(xb, xa), namely S̃ = Scγ 5, verify respectively the corresponding Dirac equations:

(γ πb − m)Sc(xb, xa) = −δ4(xb − xa) (81)

where πµ = (i∂µ − gAµ); g is the electronic charge and [γ µ, γ ν]+ = 2ηµν ; ηµν =
diag(1,−1,−1,−1); µ, ν = 0, 3 or multiplying by γ 5 on both sides of (81), we get(

γ̃ πb − mγ 5) S̃(xb, xa) = δ4(xb − xa) (82)

where γ̃ µ = γ 5γ µ; γ 5 = γ 0γ 1γ 2γ 3 = γ̃ 5; (γ 5)2 = −1.
The result given by expression (80) is, in principle, equivalent to that given in [9] where the

so-called Polyakov spin factor 8p(xb, xa) is obtained by acting through the operator (2̂b +m)

on the bosonic propagator solution of the quadratic Dirac equation.

3. Conclusion

In this paper we have been able to calculate, within the framework of path integrals, the
exact and analytic Green function for a Dirac particle in interaction with the plane wave
field expressed in the coordinate gauge. The problem has been enormously simplified using
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two identities; one bosonic and the other fermionic. These identities are directly related
to the classical equations of motion which have naturally appeared as an argument of the
delta functional. The calculations seem to be more difficult due to the complicated spinor
structure describing the spinning degrees of freedom. But the difficulty is overcome by using
exterior current sources. Then, we have been able to extract from the exact and analytic Green
function the so-called Polyakov spin factor. Finally, let us note that it is interesting to extend
our calculations to the case where the anomalous magnetic moment is present, a problem
which is under consideration.
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